Arithmetic fuchsian groups and space time block codes *
نویسندگان
چکیده
In the context of space time block codes (STBCs) the theory of arithmetic Fuchsian groups is presented. Additionally, in this work we present a new class of STBCs based on arithmetic Fuchsian groups. This new class of codes satisfies the property full-diversity, linear dispersion and full-rate. Mathematical subject classification: 18B35, 94A15, 20H10.
منابع مشابه
Arithmetic Fuchsian Groups of Genus Zero
If Γ is a finite co-area Fuchsian group acting on H, then the quotient H2/Γ is a hyperbolic 2-orbifold, with underlying space an orientable surface (possibly with punctures) and a finite number of cone points. Through their close connections with number theory and the theory of automorphic forms, arithmetic Fuchsian groups form a widely studied and interesting subclass of finite co-area Fuchsia...
متن کاملFuchsian codes with arbitrarily high code rate
Recently, so-called Fuchsian codes have been proposed in [I. BlancoChacón et al., “Nonuniform Fuchsian codes for noisy channels”, J. of the Franklin Institute 2014] for communication over channels subject to additive white Gaussian noise (AWGN). The two main advantages of Fuchsian codes are their ability to compress information, i.e., high code rate, and their logarithmic decoding complexity. I...
متن کاملFuchsian codes for AWGN channels
We develop a new transmission scheme for additive white Gaussian noisy (AWGN) single-input single-output (SISO) channels without fading based on arithmetic Fuchsian groups. The properly discontinuous character of the action of these groups on the upper half-plane translates into fast decodability.
متن کاملCooperative Orthogonal Space-Time-Frequency Block Codes over a MIMO-OFDM Frequency Selective Channel
In this paper, a cooperative algorithm to improve the orthogonal space-timefrequency block codes (OSTFBC) in frequency selective channels for 2*1, 2*2, 4*1, 4*2 MIMO-OFDM systems, is presented. The algorithm of three node, a source node, a relay node and a destination node is formed, and is implemented in two stages. During the first stage, the destination and the relay antennas receive the sym...
متن کاملLectures on Shimura Curves: Arithmetic Fuchsian Groups
The class of Fuchsian groups that we are (by far) most interested in are the arithmetic groups. The easiest way to describe arithmetic Fuchsian groups is that class of groups containing all groups commensurable with PSL2(Z) and also all groups which uniformize compact Shimura curves. This is however, not a very wellmotivated definition: structurally, what do classical modular curves and Shimura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011